
Intelligent Electronic Navigational Aids: A New Approach

Costin Barbu, Maura Lohrenz and Geary Layne
Naval Research Laboratory

1005 Balch Blvd
Stennis Space Center, MS, 39529, USA

{cbarbu,mlohrenz,glayne}@nrlssc.navy.mil

Abstract— The smart management of clutter is a key com-
ponent in designing intelligent, next-generation user interfaces
and electronic displays. Intelligent devices can enhance a user’s
situational awareness under adverse conditions. In this paper
we present two approaches to assist a user with target detection
and clutter analysis, and we suggest how these tools could be
integrated with an electronic chart system. The first tool, an
information fusion technique, is a multiple-view generalization
of AdaBoost, which can assist a user in finding a target partially
obscured by display clutter. The second technique clusters
geospatial features on an electronic display and determines
a meaningful measure of display clutter. The clutter metric
correlates with preliminary, subjective, clutter rankings. The
metric can be used to warn a user if display clutter is a potential
hazard for his performance. We compare the performance of
the proposed techniques with recent classifier fusion strategies
on synthetic and real data.

I. INTRODUCTION

Over fifteen years ago, the US Navy first installed moving-
map displays in the F/A-18 Hornet and AV-8B Harrier
aircraft. Electronic charts are now commonplace in military
and commercial aircraft, surface ships, and automobiles, and
have proven essential to anyone needing immediate access
to up-to-date geospatial information, such as meteorologists
and air traffic controllers. As new sources of information
become available for display, and as new and innovative
display techniques are developed, there is a tendency to
display everything that might be of interest to the user.
These new displays introduce potential human factors’ issues
with regard to the ability of the user to access and interpret
the displayed information. Many studies have linked display
complexity to user performance; e.g., display clutter has
been shown to significantly disrupt a pilot’s visual attention,
resulting in greater uncertainty concerning target locations
[1], [18], [19]. When a moving-map scrolls at a high rate
of speed, as in a fighter jet’s cockpit display, the chart’s
effectiveness can decrease substantially. While researchers
have demonstrated a link between user performance and the
presence of so-called ”clutter” (which can include both the
overcrowding of otherwise important information as well as
unwanted data or noise), we still lack a reliable method of
automatically quantifying display clutter in a way that can
be empirically tied to performance.

We illustrate the concept of information fusion employed
by the first tool via a simple example.

Given a set of training points X = {x1,x2, ...,xN} and M

disjoint features available for each point

xi = {x1
i ,x

2
i , ...,x

M
i } (1)

Each member x j
i in the set xi is known as a view of point xi. A

view may be thought of as a representation of point xi using
disjoint feature sets. For instance, in a color image, each
training point xi may be thought of as a set of three views,
each of which consists of one of the three disjoint features
obtained from the intensities of Red, Green and Blue color
components. In this case, the number of views will be three,
represented as {xR

i ,xG
i ,xB

i }. Similarly, for a moving target
captured using visible range and infrared sensors, the number
of views available for each training point in the training set
will be two.

The goal of classifier fusion is to obtain a classifier C
such that C learns from all the views available for each
training point and has classification accuracy that is better
than the case when only one view is available. One can ask
how helpful could introducing additional views be? A toy
example can be used to illustrate this concept. In Fig. 1 (a
and b), two classes (circles and squares) are displayed on
the OX and OY axes. It is not always possible to separate
the classes using information from a single view. On the
other hand, if information from all the views is combined,
a better classification performance may be achieved. It is
generally known that a good fusion algorithm outperforms
or at least performs as well as the individual classifiers
[14]. Considerable research in the pattern recognition field
is focused on fusion rules that aggregate the outputs of
the first level experts and make a final decision. Various
techniques for fusion of expert observations such as linear
weighted voting, the naive Bayes classifiers, the kernel
function approach, potential functions, decision trees or
multilayer perceptrons have been proposed in recent years,
[9]. Other approaches are based on bagging, boosting, and
arching classifiers [4], [5]. Comprehensive surveys of
various classifier fusion studies and approached can be found
in [10] and [11]. In [11] various classifier fusion strategies
such as minimum, maximum, average, majority vote and
oracle are discussed and the results have been compared.
Kuncheva et al. [12] discuss the effect of dependence
between individual classifiers in classifier fusion. They study
the limits on the majority vote accuracy when combining
dependent classifiers. A Q statistics based measure has been
proposed to quantify the dependence between the classifiers.
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Fig. 1. Analogy between using additional information from two different
views and using information from two different dimensions

It is shown that dependent classifiers could offer a dramatic
improvement over the individual accuracy. A synthetic ex-
periment demonstrates the intuitive result that, in general,
negative dependence is preferable. In [20] Wolpert proposes
stacked generalization, a general technique for construction
of multi-level learning systems. In the context of classifier
combination, it yields unbiased, full-size training sets for
the trainable combiner. He defines stacked generalization
as any scheme that feeds the information from one set of
classifiers (generalizers) to another before forming the final
opinion. Lanckriet et al. introduce in [13] a kernel-based
data fusion approach for protein function prediction in yeast.
The method presented in that paper combines multiple kernel
representations in an optimal fashion by formulating the
problem as a convex optimization problem that can be solved
using semidefinite programming techniques.

In this paper, we present two tools that can be integrated
with Intelligent Electronic Navigational Devices such that
a user can be assisted when display clutter disrupts his
visual attention. The first tool, a classifier fusion technique,
is detailed in [3] and [2]. For the sake of clarity that fusion
algorithm is briefly described in the next section. The second
tool is a feature clustering-based technique that analyzes the
display clutter. Based on that analysis, the user can be warned
by visual or acoustical alarm signals that his performance can
be affected by the lack of the chart’s effectiveness.

II. BOOSTING DISJOINT VIEWS USING SHARED
SAMPLING DISTRIBUTION

AdaBoost has been shown to improve the prediction
accuracy of weak classifiers using an iterative weight update
process [5]. The technique combines weak classifiers
(classifiers having classification accuracy slightly greater
than that of chance) in a weighted vote fashion giving
an overall strong classifier. Detailed explanation of the
AdaBoost algorithm is skipped here for brevity, interested
readers may refer to [16], [17] and [6] for more on
AdaBoost. One of the ways boosting may be used for
classifier fusion would be to run boosting separately on
each view, obtain separate ensembles for each view and
take a majority vote among the ensembles when presented

with test data. In this case, separate training of classifiers
is needed for each view and the sampling distributions of
the data points are also disjoint. Unlike this approach, we
perform separate training for each view but the training error
computation and sampling of training examples is done
using a shared distribution of example weights in a given
iteration. The training algorithm is shown in Algorithm 1.

Algorithm1 :Boosting with Shared Sampling Distribution
(BSSD)
Input:

1. N training examples in a training set S.
2. M views available for each training point and hence M
training sets such that S j = 〈(x j

1,y1),(x
j
2,y2).......(x

j
N ,yN)〉

where j = 1....M and yi ∈ {+1,−1} and each (x j
i ,yi) pair

represents the jth view and class label of the ith training
example.
Initialization: The weights of the training examples are
initialized to w1(i) = 1

N .
For k = 1 to kmax
1. For each view j, train classifiers C j

k , using Wk

2. Obtain weak hypotheses h j
k, for each view j

3. Obtain the error rates ε
j

k of each h j
k over the distribution

Wk such that ε
j

k = Pi∼Wk [h
j
k(x

j
i ) 6= yi]

4. If errors from each of the M views, {ε1
k ,ε2

k .....εM
k }< 0.5,

select h∗k with the lowest error rate ε∗k amongst all views
5. Compute the value α∗

k = 1
2 ln( 1−ε∗k

ε∗k
) where ε∗k =

min{ε1
k ,ε2

k .....εM
k } and α∗

k is the corresponding combination
weight value.
6. Update the weights

wk+1(i) =
wk(i)

Z∗
k

×
{

e−α∗
k if h∗k(x

∗
i ) = yi

eα∗
k h∗k(x

∗
i ) 6= yi

where h∗k is the classifier with lowest error rate ε∗k in the
kth iteration. Z∗

k is the normalizing factor so that Wk+1 is a
distribution
Output: F(x) = ∑

kmax
k=1 α∗

k h∗k(x
∗)

Final hypothesis : H(x) = sign(F(x))
In the initialization step of Algorithm 1, all the views for a

given training point are initialized with the same weight. To
understand this we go back to the RGB component example.
Suppose we have N training examples each having three
disjoint views such that a given training example xi can be
represented as xi = {xR

i ,xG
i ,xB

i }. Weak learners hR, hG and
hB will be trained on the training sets XR = {xR

1 ,xR
2 ........xR

N},
XG = {xG

1 ,xG
2 ........xG

N} and XB = {xB
1 ,xB

2 ........xB
N} such that

X = {XR ⋃
XG ⋃

XB}. Since the sampling distribution for all
views of a given example is shared, the sampling weight of
the the R, G and B views of example xi in iteration k are
given by

wR,G,B
k (i) = wR

k (i) = wG
k (i) = wB

k (i).

After a classifier h∗k with lowest error rate ε∗k is selected in
step 4 of Algorithm 1 and combination weight α∗

k is obtained,
the weights of the views are updated.



III. QUANTIFYING VISUAL CLUTTER VIA FEATURE
CLUSTERING

Previous studies on clutter (e.g. [15] and [21]) focus
primarily on the contribution of saliency to image clutter.
We theorize our perception of clutter is related to both
saliency and color uniformity, or ”density”. Saliency refers
to how clearly one color or feature ”pops out” from the
surrounding features in an image, which we estimate by
a weighted average of color gradients between adjacent
features. Color uniformity refers to how densely-packed
are similarly-colored pixels within the image. To calculate
this value, we have adapted a clustering algorithm, which
we originally developed to cluster seafloor objects detected
in sidescan sonar imagery. The algorithm clusters features
detected within a predetermined geospatial distance from
each other, produces vertices for a bounding cluster polygon,
and calculates the cluster’s density as the number of clustered
features divided by the area of the polygon. For this project,
we adapted the clustering algorithm to operate in three-
dimensional (3D) space, in which the third dimension is
color. Our ”color uniformity” value is then derived from the
density of similarly-colored pixels within a 3D cluster (i.e.,
density = a weighted number of points within the cluster
divided by the cluster’s volume). We describe image clutter
in terms of both local and global clutter components. A
Local Clutter Metric (LCM) represents the contribution of
one color or feature to the overall image clutter, and equals
1 minus the weighted average (by area) of the densities
of all clusters centered on that color or feature. A Global
Clutter Metric (GCM) represents the overall image clutter,
equal to the weighted average of the LCM’s for all colors or
features in the image. Fig. 2 illustrates our proposed clutter
function, in terms of saliency and LCM/GCM. The following
sections describe in more detail how each of these metrics
is calculated.

Fig. 2. Clutter as a function of saliency and LCM (for local clutter) or
GCM (global clutter)

A. 3D Clustering using Geospatial Bitmaps (GB)
The original clustering algorithm relies on a geospatial

bitmapping (GB) technique patented by NRL in 2001 [8].

The algorithm is unique in that it is an autonomous, con-
sistently repeatable, computationally efficient ”single-pass”
method operating on a user-defined area of interest [7].
The algorithm clusters features by geospatial location and
calculates a numerical measure of ”cluster density” that
considers the number and size of objects clustered in a given
area, as well as the scale or resolution of the complete
dataset. An enhancement to the original algorithm for this
project is the ability to cluster features in three or more
dimensions: two geospatial (x, y) dimensions plus a third
(z) dimension such as color, size, or feature type. This
paper presents preliminary results of clustering by geospatial
location and color.

The GB clustering algorithm is a nonhierarchical algo-
rithm with results similar to Nearest Neighbor (NN). NN iter-
atively calculates and compares the distances between every
pair of elements in the dataset to determine which elements
should be clustered together. In contrast, the GB algorithm is
non-iterative, faster, less computationally intensive, and re-
quires less computer memory than NN. The authors suggest
that the GB algorithm is well suited to autonomous clustering
applications, because the ordering of elements input to the
algorithm has no effect on the resulting clusters (unlike NN
and other single-pass methods), and the GB algorithm does
not require a seed point to initiate clustering (unlike K-means
and other relocation methods). The GB algorithm uses simple
bitmaps, in which bits are turned on (set = 1) or off (cleared =
0), indicating the presence or absence of elements of interest.
The index of each bit is unique and denotes its position
relative to the other bits in the bitmap. In a 2D bitmap,
each bit is indexed by its column (x) and row (y); in 3D,
each bit is indexed by x, y, and depth (z). Although a GB
can be defined for an entire finite space, memory is only
allocated - dynamically - when groups of spatially close bits
are set, resulting in a compact data structure that supports
very fast Boolean and morphological operations. For this
project, 3D bitmaps were used to cluster the pixels in an
image of interest, based on geospatial location (x, y) and
color (z). A separate clustering was performed for each color
in the image. For example, Fig. 3 illustrates the results of
clustering the shoreline pixels (darker brown color) in the
sample image (left). All pixels within a geospatial distance of
1 (x and y) and a color distance of 9 (using the Commission
Internationale d’Eclairage (CIE) L*a*b* color space) are
included in the clusters (right). In this case, the resulting
clusters only contain the shoreline pixels themselves. If z
were increased to 10, every pixel in this image would be
contained in a single cluster, because every pixel in this
image is immediately surrounded by pixels that are within a
color distance of 10 in CIE L*a*b* space.

B. Calculating Cluster Density

After clustering all pixels in the image into bounded
polygons for a given ”seed color” s, a cluster density DP
is calculated for each cluster polygon P:



Fig. 3. Example of clustering by geospatial location and color: all pixels
within a predetermined distance in geospatial (x=1, y=1) and color (z=9)
space of the shoreline pixels (brown pixels in the original image, left) are
clustered together. The resulting clusters are shown at right. The zoomed-in
section shows a detail of the clustered pixels.

DP = ∑(WcNc)
AP

where: Wc = Weighting f actor f or color c
= 1− Ec

M
Ec = Euclidean distance between colors c and s in the
chosen color space; e.g., f or CIE L∗a∗b :
=

√
[(Lc−Ls)2 +(ac−as)2 +(bc−bs)2]

M = Maximum distance between colors in chosen color
space
Nc = Number o f pixels o f color c in the cluster polygon
AP = Area o f cluster polygon P

The color of each pixel in the cluster will be within a
color distance of z from all immediately surrounding pixels
in the cluster, starting with pixels of color s. In other words,
the cluster will ”chain” pixels together to form the cluster,
starting with each pixel of color s and subsequently including
all other pixels within a geospatial distance of x, y and a
color distance of z. If z = 0, then DP = NS

AP
. Note the inverse

relationship between clutter and density as it is used here:
higher density predicts lower clutter, since density describes
how closely-packed like-pixels are in the image.

C. Local and Global Clutter Metrics

Local density (DS) estimates how much an individual seed
color (s) contributes to the overall clutter of the image. DS
is computed as the weighted average of the densities for all
clusters centered on color s:

DS = ∑(DPAP)
AS

where: DP = Density o f cluster p (described in the
previous section)
AS = Sum o f areas o f all clusters f or color s

Global density (DI), which estimates clutter for the entire
image, is computed as the weighted average of the local
clutter densities for all colors in the image:

DI = ∑(DSAS)
AI

where: DS = Weighted average o f clutter densities f or all
clusters centered on color s (described above)
AI = Sum o f all areas AS f or image I.

D. Saliency

We estimate the local saliency of a given color or feature
as a weighted average of the color differences between
each color or feature of interest and immediately adjacent
colors or features. For example, if one feature in the image
(e.g., a yellow lighthouse symbol on a nautical chart) is
completely surrounded by another feature (e.g., solid blue
water), we would estimate the saliency of the lighthouse
as the Euclidean distance between these two colors (yellow
and blue) in a perceptually representative color space. If
this lighthouse symbol were placed on a shoreline (brown),
such that 40% of the lighthouse symbol was bordered by the
blue water, 40% by tan land, and 20% by the brown shore-
line, we would estimate the saliency of the lighthouse by
0.4 ∗ (blue− yellow)+ 0.4 ∗ (tan− yellow)+ 0.2 ∗ (brown−
yellow). Global saliency is estimated as the weighted average
of the local saliencies for all colors (or features) in the image.
Greater color distances result in greater saliency.

The choice of an appropriate color space is central to
this theory. Unfortunately, no single color space has been
shown to perfectly model human visual perception. For this
paper, we chose the standard CIE L*a*b* color space, but
we continue to search for improved options.

IV. EXPERIMENTAL RESULTS

We employed our fusion algorithm for target/clutter dis-
crimination on two sets of binary class synthetic data and
on a set of real data. We generated 32 target class images
for each of the synthetic data sets such that a HUD (head-up
display) symbol, a Bray-style flight path marker is included
in each image as in [21]. The clutter class images are
represented for the two synthetic data sets by images that
share a common texture pattern. Sample images from both
classes for the synthetic and real data sets are illustrated in
Fig. 4. We consider the fusion of three views represented
by the principal component projections, edges and wavelet
coefficients for each image.

Fig. 4. Sample images of target (first row) and clutter (second row)

We empirically compare BSSD with the fusion methods
stacked generalization (stacking), semidefinite programing
(SDP/SVM) and majority vote (SVM–MV). Experimental
results are presented in Tables I thru VI. The results
represent the average accuracy of 20 tests, each time the
data sets being randomly partitioned such that 60% of the
data is in the training set and the remaining 40% is in



the test set. Average accuracy of an individual classifier
from each view before fusion is shown in columns AV1 ,
AV2 and AV3 . The average fusion accuracy is presented in
column A f usion. Naive Bayes classifiers were used as weak
learners for boosting. The SVM algorithm used as a back-
end generalizer in stacking has two procedural parameters: σ

and C, the soft margin parameter. Ten-fold cross-validation
was used for model selection, taking σ values in [10−2,102]
and C in [10−2,102]. Majority vote is also used for fusion
of expert observations for the fusion techniques SVM–MV
in which SVM has been used as classifier for each view.
We used gaussian, polynomial and linear kernel functions
on each view for the semidefinite programming technique.
We compared the robustness of BSSD to noise with the
competing techniques by randomly adding noise to the
training data labels on all three views by flipping the labels.

We calculated global and local clutter metrics for the
synthetic data (images with the target symbol surrounded by
varying amounts of clutter vs. images with clutter only) and
”real” data (aerial photographs of airport runways overlaid
with HUD symbology vs. similar scenes without the HUD
overlay). Results for the synthetic images are presented in
Fig. 5; results for the real scenes are in Fig. 6. The
synthetic images were binned into three groups ranging from
lowest clutter (group 1) to highest clutter (group 3). To
calculate local metrics for the no-target images, the darkest
color of each image was chosen as the color of interest; for
the target images, the target color (black) was chosen. The
local clutter metrics (LCM and saliency) clearly delineated
between synthetic images containing the target symbol and
images containing only clutter. In general, images containing
the target symbol exhibited higher local salience and lower
local clutter than images without the target. The global
metrics did not as clearly distinguish between the images
containing the target and those without the target, since both
sets of images contained equivalent amounts of background
clutter.

Similarly, local clutter metrics clearly delineated between
real airport scenes with HUD overlays and those without
(in which pixel colors for the runways were used as the
local feature of interest). In particular, the saliency of the
HUD overlays was considerably higher than the saliency of
the runways without HUD overlays. In addition, both local
metrics (saliency and clutter) were significantly different
than the global metrics for images with the HUD overlays,
providing another cue for detecting this target. Conversely,
local and global metrics were nearly identical for images
without the HUD overlays. In other words, comparisons of
both saliency and ”color homogeneity” could be successfully
used to predict how easily a HUD overlay might be detected
(or how hard it might be to detect a runway without the HUD
overlay) against various realistic background scenes.

V. SUMMARY AND DISCUSSION

In this paper we present two tools of potential utility to
users of electronic chart displays. The first tool is a boosting-
based classifier fusion that can assist a user in finding a

Fig. 5. Plots of Clutter Metrics vs. Saliency for target vs. clutter synthetic
data

Fig. 6. Plots of Clutter Metrics vs. Saliency for target vs. clutter real data

TABLE I
EXPERIMENTAL RESULTS SYNTHETIC DATA SET 1 (NO NOISE)

Technique AV1 AV2 AV3 A f usion Statistical
Used Significance

SVM–MV 0.648 0.544 0.946 0.778 yes
Stacking 0.648 0.544 0.946 0.690 yes

SDP/SVM Poly Lin Gaus 0.482 yes
BSSD 1.000 0.995 0.999 1.000

TABLE II
EXPERIMENTAL RESULTS SYNTHETIC DATA SET 2 (NO NOISE)

Technique AV1 AV2 AV3 A f usion Statistical
Used Significance

SVM–MV 0.800 0.948 0.650 0.910 yes
Stacking 0.800 0.948 0.650 0.954 yes

SDP/SVM Poly Lin Gaus 0.59 yes
BSSD 0.9967 1.000 0.8914 1.000



TABLE III
EXPERIMENTAL RESULTS REAL DATA SET (NO NOISE)

Technique AV1 AV2 AV3 A f usion Statistical
Used Significance

SVM–MV 0.678 0.888 0.526 0.794 yes
Stacking 0.678 0.888 0.526 0.9038 yes

SDP/SVM Poly Lin Gaus 0.600 yes
BSSD 0.711 0.999 0.583 1.000

TABLE IV
EXPERIMENTAL RESULTS SYNTHETIC DATA SET 1 (NOISE 30%)

Technique AV1 AV2 AV3 A f usion Statistical
Used Significance

SVM–MV 0.542 0.542 0.738 0.675 yes
Stacking 0.542 0.542 0.738 0.559 yes

SDP/SVM Poly Lin Gaus 0.482 yes
BSSD 0.629 0.618 0.743 0.946

target when display clutter disrupts visual attention. The
classifier fusion strategy performs classification using weak
learners trained on different views of the training data. The
final ensemble contains learners trained to focus on different
views of the test data. The combination weights for the
final weighting rule are obtained using a shared sampling
distribution. In each iteration, one weak learner is selected
from the pool of weak learners trained on disjoint views.
This results in a minimization of the training error for the
final hypothesis. It was shown in [3] that a lower training
and generalization error bound can be achieved if a shared
sampling distribution is used and a weak learner from the
lowest error view is selected.

The second tool is a feature clustering technique that
analyzes display clutter and attempts to determine whether
a target of interest exists. Based on these analyses, the user
could be warned by visual or acoustical alarms if his or
her performance is likely to be affected by the amount

TABLE V
EXPERIMENTAL RESULTS SYNTHETIC DATA SET 2 (NOISE 30%)

Technique AV1 AV2 AV3 A f usion Statistical
Used Significance

SVM–MV 0.587 0.723 0.588 0.740 yes
Stacking 0.587 0.723 0.588 0.748 yes

SDP/SVM Poly Lin Gaus 0.510 yes
BSSD 0.689 0.731 0.611 0.921

TABLE VI
EXPERIMENTAL RESULTS REAL DATA SET (NOISE 30%)

Technique AV1 AV2 AV3 A f usion Statistical
Used Significance

SVM–MV 0.615 0.690 0.538 0.692 yes
Stacking 0.615 0.690 0.538 0.730 yes

SDP/SVM Poly Lin Gaus 0.550 yes
BSSD 0.523 0.747 0.516 0.788

of clutter in the display. The performance of the classifier
fusion algorithm has been compared with other data fusion
algorithms, namely stacking, majority vote and a semi-
definite programming-based kernel method. We show that the
proposed technique performs statistically significant better
than other fusion techniques with > 95% confidence using a
two-sided paired T-test.
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